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In recent years, Gaussian process (GP) models have been popularly studied to solve hard machine learn-
ing problems. The models are important due to their flexible non-parametric modeling abilities using
Mercer kernels and the Bayesian framework for probabilistic inference. In this paper, we propose a sparse
GP regression (GPR) model for tourism demand forecasting in Hong Kong. The sparsification procedure of
the GPR model not only decreases the computational complexity but also improves the generalization
ability. We experiment the proposed model with monthly demand data that are relevant to Hong Kong’s
tourism industry, and compare the performance of the sparse GPR model with those of various kernel-
based models to show its effectiveness. The proposed sparse GPR model shows that its forecasting capa-
bility outperforms those of the ARMA model and the two state-of-the-art SVM models.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The tourism industry in Hong Kong has recently undergone
drastic changes in terms of international demand for inbound tra-
vel, both in tourism receipts and tourist arrivals. Associated with
these drastic changes is the restructuring of inbound tourist mar-
ket segments, and therefore different needs for tourism products
and services. As an example, the changes in tourism demand in
Hong Kong are more prominent after the introduction of the Indi-
vidual Visit Scheme to residents in certain cities in Mainland China
(Law, To, & Goh, 2008). In view of the new challenges and oppor-
tunities that the Hong Kong tourism industry has been, and will
be facing, this research is expected to make a major contribution
to tourism demand forecasting in Hong Kong.

To a large extent, accurate forecasts of demand for tourism are
crucial for effective planning by all providers of services and prod-
ucts in tourism (Perez & Sampol, 2000). In its broadest classifica-
tion, tourism demand forecasting divides into qualitative and
quantitative streams. A qualitative approach, such as a desk
reviewing method or an expert-opinion technique, stresses the
qualitative insight, intuition, and non-quantifiable knowledge of
a particular tourism event. However, these qualitative relation-
ship-identification methods are slow and tedious, and have been
ll rights reserved.
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criticized as ‘‘artistic in nature’’ and unable to be generalized
(Walle, 1997). Quantitative (formal) tourism demand forecasting
approaches, employing either causal or time series models, apply
mathematical functions to estimate the quantitative relationships
of some phenomena in numerical tourism data (Goh, Law, &
Mok, 2008; Law, 2000b; Law, Goh, & Pine, 2004; Mok, 1990; Witt
& Witt, 1995). On the basis of past performance, these models
can then be used to project some future values. However, Goh
and Law (2003) commented that given the complex and interre-
lated nature of today’s tourism demand framework, the inclusion
of only traditional economic variables in the econometric models
could be insufficient. Similarly, Song and Li (2008) stated that AI-
based tourism forecasting models can achieve better results than
other methods. Due to the limitation of space, this section mainly
covers AI-based modeling techniques.

Gaussian processes (GPs) are non-parametric models where a
priori Gaussian process is directly defined over function values.
The direct use of Gaussian processes as priors over functions was
motivated by Neal (1996), as he studied priors over weights for
ANNs. A model equivalent to GPs, kriging, has since long been used
for analysis of spatial data (Cressie, 1993). In a more formal way, in
a GP, the function outputs f(xi) are a collection of random variables
indexed by the inputs xi. Any finite subset of outputs has a joint
multivariate Gaussian distribution (Rasmussen, 1996).

GP models are routinely used to solve difficult machine learning
problems. A recent overview of GP methods is provided by
Rasmussen and Williams (2006). Generally speaking, GPs allow a
Bayesian use of kernel machines for learning, with the two key
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advantages of: (i) GPs provide full probabilistic predictive distribu-
tions, including estimations of the uncertainty of the predictions,
and (ii) the evidence framework applied to GPs enables the learn-
ing of parameters of the kernel.

Treated within a Bayesian framework, very powerful statistical
methods can be implemented in GP models which have valid esti-
mations of uncertainties in the predictions, and generic model
selection procedures cast as nonlinear optimization problems.
However, an important problem with GP methods is that the naive
implementation requires computation which grows as o(n3),
where n is the number of training cases. To overcome the compu-
tational limitations of GP regression, many authors have recently
suggested a variety of sparse approximations (Keerthi & Chu,
2006; Quinonero-Candela & Rasmussen, 2005). These techniques
can broadly be divided into two classes of: (1) those that are based
on sparse methods, which approximate the full posterior by
expressions involving matrices of lower rank m < n, and (2) those
relying on approximate matrix–vector multiplication conjugate
gradient methods. In this paper, class (1) is applied to our tourism
demand forecasting tasks.

To our knowledge, sparse GPR models in tourism demand anal-
ysis has been entirely unexplored by the academic community. As
such, this paper is the first attempt to investigate the issue. Re-
search outcomes are expected to have superb generalization ability
compared to other models in tourism demand analysis, and have
the advantage of comprehensibility in terms of confidence levels.

The paper is organized as follows. In Section 2 we introduce the
AI-based tourism forecasting literature. In Section 3 we describe
the proposed method, and in Section 4 we report the results of
numerical experiments that demonstrate the effectiveness of our
method. The conclusion is arranged in Section 5.
2. Literature review

In recent years, researchers have attempted to develop forecast-
ing models that mimic human nervous systems to tourism demand
analyses (Cho, 2003; Law, 2000a; Uysal & Roubi, 1999). This bio-
logical resemblance has guided researchers to examine the poten-
tial applications of artificial neural networks (ANNs) in pattern
classification and modeling. In the context of tourism forecasting,
prior studies on single destinations have shown that ANNs are
superior to selected forecasting techniques (Cho, 2003; Law,
2000b; Law & Au, 1999). However, the structure of ANNs has to
be manually selected and optimized in a trial-and-error way. It is
thus difficult to guarantee its generalization performance. Another
limitation of ANNs is the problem of over-fitting that frequently
occurs after training (Lawrence & Giles, 2000).

Recently, SVMs (Vapnik, 2000) have been the main advance in
statistical learning theory for data forecasting and classification
(Brahim-Belhouari & Bermak, 2004; Fan, Chen, & Lin, 2005; Guo
& Li, 2003; Xu, Law, & Wu, 2007, 2009; Xu & Wang, 2005). The
aim of the theory of statistical learning is to study how to select
or control the structural complexity of various learning machines
(e.g., ANNs and fuzzy sets) so that the generalization ability or pre-
cision of forecasting and classification can be guaranteed and opti-
mized. Compared with ANNs, which are based on the traditional
empirical risk minimization (ERM) principle, SVMs are a class of
statistical learning algorithms derived from the structural risk min-
imization (SRM) principle, and the generalization ability of SVMs
can be guaranteed by selecting the structural complexity automat-
ically. In addition, the training procedure of SVMs is a convex qua-
dratic programming process such that the local minima problem in
ANNs can be eliminated (Lin, 2001).

SVM-based models have been shown in many cases to be
more accurate than ANNs in regression and prediction problems
(Cristianini & Schölkopf, 2002). Tourism researchers should, there-
fore, refocus their attention to SVM-based modeling techniques as
they can better capture the useful information in tourism datasets.
Pai and Hong (2005) proposed a preliminary SVM model with ge-
netic algorithms to forecast tourist arrivals. Experimental results
showed that the proposed model outperformed the ARIMA ap-
proaches. In Chen and Wang’s (2007) study, a genetic algorithm
was combined with Support Vector Regression (SVR) to model
tourist arrivals to China during 1985–2001. Empirical evidence
showed that their approach outperformed ANNs and ARIMA mod-
els based on the normalized mean square error (NMSE) and mean
absolute percentage error (MAPE).
3. Methodology

Tourism demand analysis can be formulated as a regression
problem, where the goal is to estimate an unknown continuous-
valued function by collecting a finite number of training samples
(xi,y), (i = 1,2, . . .,n), where d-dimensional input x 2 Rd and output
y 2 R. Assuming the statistical model for data generation has the
following form:

y ¼ rðxÞ þ d ð1Þ

where r(x) is the unknown target function, and d is an additive zero
mean noise with noise variance r2.

To solve the above regression problem, the proposed sparse
GPR-based modeling method for tourism demand forecasting in-
cludes the following aspects.

3.1. Basic GPR model

A Gaussian process (GP) is a powerful, non-parametric tool for
regression in high dimensional spaces. Key advantages of GPs are
their ability to provide uncertainty estimations and to learn the
noise and smoothness parameters from training data. More GPR
information can be found in Rasmussen and Williams (2006). A
GP can be considered as a ‘‘Gaussian over functions’’. More pre-
cisely, a GP describes a stochastic process in which the random
variables, in this case the outputs of the modeled function, are
jointly Gaussian distributed. A GP is fully described by its mean
and covariance functions.

A Gaussian process regression (GPR) model is a Bayesian frame-
work which assumes a GP prior over functions, i.e. that a priori the
function values behave according to the following assumptions:

The training set D = {(x1,y1), (x2,y2), . . ., (xn,yn)} is assumed to be
drawn from the (noisy) process:

yi ¼ f ðxiÞ þ e ð2Þ

where xi is an input vector in Rd and yi is a scalar output in R (exten-
sion to multiple outputs is possible). The noise term e is drawn from
N(0,r2). For the sake of convenience, the inputs are aggregated into
a matrix X = [x1,x2, . . .,xn]. The outputs are likewise aggregated,
y = [y1,y2, . . .,yn]. The joint distribution over the (noisy) outputs y gi-
ven inputs X is a zero-mean Gaussian, and has the form:

pðyjXÞ ¼ Nð0;KðX;XÞ þ r2IÞ ð3Þ

where the covariance matrix K(X,X) is also called the kernel matrix
with elements Kij(xi,xj). The kernel function k(x,x0) is a measure of
the distance between input vectors. The covariance function en-
codes the assumptions about the function that is wished to learn,
by defining a notion of similarity between two function values, as
a function of the corresponding two inputs. The term r2I introduces
the Gaussian noise and plays a similar role to that of e in (2).

For the kernel function, a common choice is the Gaussian, or
squared exponential:
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Kij ¼ kðxi; xjÞ ¼ v2 exp �ðxi � yiÞ
2k2

� �
ð4Þ

where v2 controls the prior variance, and k is an isotropic length-
scale parameter that controls the rate of decay of the covariance,
i.e., it determines how far away xi must be from xj for fi to be unre-
lated to fj.

Given the training samples (xi,yi) and a set of test points X⁄, the
objective of GPR is to find the predictive outputs f⁄with probabilis-
tic confidence levels. By making use of the Bayesian inference, the
joint posterior distribution is

pðf ; f � yj Þ ¼ pðy fj Þpðf ; f �Þ
pðyÞ ð5Þ

The posterior predictive distribution is produced by marginaliz-
ing the unwanted training set latent variables

pðf � yj Þ ¼
Z

pðf ; f � yj Þdf ¼
Z

pðy fj Þpðf ; f �Þ
pðyÞ df ð6Þ

The joint prior distribution and the independent likelihood
probability are both Gaussian distribution:

pðf ; f �Þ ¼ N 0;
Kf ;f Kf � ;f

Kf ;f � Kf � ;f �

� �� �
ð7Þ

Pðy fj Þ ¼ Nðf ;r2IÞ ð8Þ

where f and f⁄ is a subscript of the variables between which the
covariance is computed and I is the identity matrix. Since both fac-
tors in the integral (7) are Gaussian, the integral can be evaluated in
a closed form to give the Gaussian predictive distribution:

pðf � yj Þ ¼ Nðl;RÞ ð9Þ

where l is the predicted output and R is the variance, which can be
used as the uncertain estimations for confidence levels:

l ¼ KðX�;XÞ½KðX;XÞ þ r2I��1y ð10Þ
R ¼ KðX�;X�Þ � KðX�;XÞ½KðX;XÞ þ r2I��1KðX;X�Þ ð11Þ

The parameters of the kernel function, h ¼ ½k;v;rn�, are called the
hyper-parameters of the Gaussian process. These hyper-parameters
can be learned by maximizing the log likelihood of the training out-
puts given the inputs:

hmax ¼ arg max
h
flogðpðy X; hj ÞÞg ð12Þ

where

logðpðy xj ÞÞ ¼ �1
2

yTðKðX;XÞ þ r2IÞ�1y

� 1
2

log KðX;XÞ þ r2I � n
2

������ log 2p ð13Þ
3.2. Sparse approximation to GPR model for tourism demand
forecasting

The problem with the above GPR model is that it requires inver-
sion of a matrix of size n � n which requires o(n3) operations,
where n is the number of training cases. To reduce the computa-
tional complexity of the basic GPR model, many computationally
efficient approximation methods for GPR have been proposed.
Common to all these approximation schemes is that only a subset
of the latent variables is treated exactly, and the remaining vari-
ables are given some approximate, but computationally cheaper
treatments. In the study of Quinonero-Candela and Rasmussen
(2005), a unifying description of sparse approximations for GP
regression was provided by modifying the joint prior p(f⁄, f) from
(6) in ways which will reduce the computational requirements
from (8). This general sparse approximation procedure is briefly
presented as follows.

Let us first rewrite that prior by introducing an additional set of
m latent variables l = [l1, . . .,lm] which we call the inducing vari-
ables. These latent variables are values of the Gaussian process (as
also f and f⁄), corresponding to a set of input locations Xl, which we
call the inducing inputs.

Due to the consistency of Gaussian processes, we know that we
can recover p(f⁄, f) by simply integrating (marginalizing) out l from
the joint GP prior p(f⁄, f,l)

pðf �; f Þ ¼
Z

pðf ; f �;lÞ ¼
Z

pðf ; f � lj ÞpðlÞdl ð14Þ

where p(l) = N(0,Kl,l).
As we shall detail in the following sections, the different com-

putationally efficient algorithms proposed in the literature corre-
spond to different additional assumptions about the two
approximate inducing conditionals qðf lj Þ; qðf � lj Þ of the integral
in (9).

We approximate the joint prior by assuming that f⁄ and f are
conditionally independent given l, such that:

pðf ; f �Þ � qðf ; f �Þ ¼
Z

qðf � lj Þqðf lj ÞpðlÞdl ð15Þ

pðf lj Þ ¼ NðKf ;lK�1
l;ll;Kf ;f � Q f ;f Þ ð16Þ

pðf � lj Þ ¼ NðKf � ;lK�1
l;ll;Kf � ;f � � Q f � ;f � Þ ð17Þ

where

Qa;b,Ka;lK�1
l;llKl;b ð18Þ

Most of the sparse GPR methods, such as those studied in Keerthi
and Chu (2006), correspond simply to different approximations to
the conditionals in (10) with exact likelihood and inducing prior.

4. Performance evaluation and comparisons

To illustrate the sparse GPR method, tourism demand forecast
with multi-factors is studied. In general, demands for international
travel can be estimated by the following function f (Goh & Law,
2003; Kim & Uysal, 1998; Lathiras & Siriopoulos, 1998; Lee, Var,
& Blaine, 1996; Lim, 1997; Song & Witt, 2000)

Qijt ¼ f ðIncit ;RPift; TCijt ; FERijt; Popit ;Mktjt;QFjt ; ntÞ ð19Þ

where i = 1,2, . . ., I (for I origins); I is set for 13 in this research;
j = 1,2, . . ., I (for J destinations); in this research, J is set for 1, which
represents Hong Kong; t = 1,2, . . .,K (for K time periods); K is set for
38 for annual data and 456 for monthly data ; Qijt = origin i’s de-
mand for travel to destination j at time t; Incit = income of origin i
at time t; RPift = prices in destination j relative to origin i at time
t; TCijt = transportation costs between origin i and destination j at
time t; FERijt = foreign exchange rate, measured as units of destina-
tion j’s currency per unit of origin i’s currency at time t; Popit = pop-
ulation in origin i at time t; Mktjt = marketing expenses to promote
destination j’s tourism industry at time t; QFjt = qualitative factors
(including special events, changes in tourism policies, climate, and
leisure time) in destination j that are relative to origin at time t;
nt = random error at time t.

Depending on data availability, tourism researchers use real or
proxy values for the dependent variable and the explanatory vari-
ables described in function (19) will be used for model calibration
and data analysis.

The study covered the time period 1985–2008 for monthly
analysis (due to data availability). Since it is not possible to include
all countries/origins in this research, we conducted an initial
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search and thus determined 13 countries/origins that had gener-
ated the most number of inbound tourists to Hong Kong with the
most number of tourist arrivals during the time period. During
the research process, we have collected secondary data from uni-
versity libraries, library of the Hong Kong Tourism Board, and other
research institutes. Both online and printed versions of data source
were used. The data set contains 276 samples representing the
recording period of the number of tourist arrivals. We obtain 142
patterns for training and 134 for testing candidate models. Predic-
tive patterns are generated by windowing 10 inputs and one
output.

In addition, distinct numerical variables have different dimen-
sions and should be normalized firstly. The following normaliza-
tion is adopted:

�xd
i ¼

xd
i �minðxd

i

��l
i¼1Þ

maxðxd
i

��l
i¼1Þ �minðxd

i

��l
i¼1Þ

; d ¼ 1;2; . . . ; n2 ð20Þ

where l is the number of samples, xd
i and �xd

i denote the original va-
lue and the normalized value respectively. In fact, all the numerical
variables from (1)–(19) are the normalized values although they are
not marked by bars.

Obviously, the tourism demand is a multivariable series. The
normalized data set with an additive zero mean noise is presented
in Fig. 1.

The experiments are conducted on a 1.80 GHz Core(TM)2 CPU
personal computer (PC) with 1.0G memory under Microsoft Win-
dows XP professional. Some criteria, such as mean absolute error
(MAE), mean square error (MSE) and mean absolute percentage er-
ror (MAPE), are adopted to evaluate the forecasting performance of
the sparse GPR method. The predictive performance given by
sparse GPR method is illuminated in Figs. 2–5. It is obvious that
the predictive performance of the sparse GPR has good generaliza-
tion capability for the tourism data.

Apparently, tourism demand forecasting as an application of
time series forecasting is a complex dynamic system, and the de-
mand behavior is affected by many factors. Many of these factors
have the random, nonlinear, seasonal, and uncertain characteris-
tics. There is a kind of nonlinear mapping relationship between
the influencing factors and demand series. As such, it is difficult
to present the relationship by traditional models.

To analyze the forecasting performance of the proposed sparse
GPR, some state-of-the-art models such as ARMA, m-SVM (Wu,
2009) and g-SVM (Wu, 2010) are selected to handle the above mul-
tidimensional tourism demand series. The indexes MAE, MAPE and
MSE are used to evaluate the forecasting capability of the above
four models. The results of the experiments indicate the running
cost of the model ARMA is the highest among all selected models.
The running cost of m-SVM is close to that of g-SVM. Although the
forecasting precision of the proposed sparse GPR is better than that
Fig. 1. Training and testing set with an additive zero mean noise.

Fig. 4. Predictive likelihood.
of the models m-SVM and g-SVM, the running cost of the proposed
sparse GPR is higher than that of the models m-SVM and g-SVM.
Table 1 shows the forecasting accuracy of the four models.

Then we can find that ARMA model is not appropriate for the
tourism demand series. The comparison results indicate the accu-
racy indexes MAE, MAPE and MSE as provided by sparse GPR are
better than ones of ARMA. Moreover, the forecasting accuracy gi-
ven by sparse GPR excels the ones by other kernel-based models
such as v-SVM and g-SVM. The proposed sparse GPR thus has a
good generalization performance and is appropriate to those cases
with tourism demand forecasting.

In summary, based on the forecasting method using sparse GPR
models, the experiment has shown that reasonable prediction and



Fig. 5. Out-of-sample percent prediction correct.

Table 1
Forecasting accuracy of the four models.

Model MAE MAPE MSE

ARMA 153.8 43.6 13,657
v-SVM 17.2 5.7 448
g-SVM 11.38 3.78 188
Sparse GPR 1.834 0.64 75.3
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tracking performance can be achieved in the case of nonstationary
tourism series. Therefore, sparse GPR models are a practical and
powerful Bayesian tool for data analysis in the context of tourism
demand forecasting.

5. Conclusions

In this paper we proposed the use of the sparse GPR models
to keep us from avoiding over-fitting problems and to provide a
predictive distribution of tourism demand. Although sparse GPRs
are very flexible regression models, they are still limited by the
form of the covariance function. For example it is difficult to
model non-stationary processes with a sparse GPR model be-
cause it is hard to construct sensible non-stationary covariance
functions. Although the sparse GPR is not specifically designed
to model non-stationarity, the extra flexibility associated with
moving active inputs around can actually achieve this to a cer-
tain extent. The experiment shows the sparse GPR model fits
to some data with an input dependent noise variance. The sparse
GPR achieves a much better fit to the data than the standard GP
by moving almost all the active input points outside the region
of data. It will be interesting to test these capabilities further
in the future.

To show the effectiveness of the proposed method compared
with other tradition model and kernel-based models, we have con-
ducted simulation with the tourism demand data of Hong Kong.
Experimental results show that the forecasting capability of the
sparse GPR model outperforms those of ARMA and other kernel-
based models in terms of error index, thereby generating consis-
tent results. The extension to classification is also a natural avenue
to explore.
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