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Abstract As an important approach to solving complex

sequential decision problems, reinforcement learning (RL)

has been widely studied in the community of artificial

intelligence and machine learning. However, the general-

ization ability of RL is still an open problem and it is

difficult for existing RL algorithms to solve Markov deci-

sion problems (MDPs) with both continuous state and

action spaces. In this paper, a novel RL approach with fast

policy search and adaptive basis function selection, which

is called Continuous-action Approximate Policy Iteration

(CAPI), is proposed for RL in MDPs with both continuous

state and action spaces. In CAPI, based on the value

functions estimated by temporal-difference learning, a fast

policy search technique is suggested to search for optimal

actions in continuous spaces, which is computationally

efficient and easy to implement. To improve the general-

ization ability and learning efficiency of CAPI, two adap-

tive basis function selection methods are developed so that

sparse approximation of value functions can be obtained

efficiently both for linear function approximators and ker-

nel machines. Simulation results on benchmark learning

control tasks with continuous state and action spaces show

that the proposed approach not only can converge to a

near-optimal policy in a few iterations but also can

obtain comparable or even better performance than

Sarsa-learning, and previous approximate policy iteration

methods such as LSPI and KLSPI.

Keywords Reinforcement learning � Approximate policy

iteration � Markov decision processes � Learning control �
Generalization

1 Introduction

Reinforcement learning (RL) has been considered as an

efficient way to solve complex multistage decision prob-

lems that fall under the general framework of Markov

decision problems (MDPs), with possibly unknown model

parameters. Due to its wide applicability, RL has been

popularly studied in the literature of artificial intelligence

and machine learning (Kaelbling et al. 1996; Sutton and

Barto 1998). Unlike the dynamic programming (DP)

methods in operations research, which study various solu-

tion methods for MDPs with known models, RL mainly

focuses on MDPs with little model information. Therefore,

RL is more suitable for solving sequential optimization and

control problems with uncertain conditions, which are

more practical in many real-world applications.

To estimate the optimal policies of MDPs, various value

function estimation techniques have been studied in the RL

community. Earlier work on value function estimation in

RL mainly dealt with MDPs with discrete state and action

spaces. In Sutton (1988), the temporal difference (TD)

learning algorithm was proposed. A general form of TD

learning algorithm, i.e., TD(k), was proved to converge

when the cardinality of tunable parameters is the same as

that of the state space (Dayan 1992; Dayan and Sejnowski

1994). Furthermore, several algorithms have been studied

for estimating the optimal value functions of finite-state
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MDPs, and some theoretical results have been obtained. In

Watkins and Dayan (1992) and Tsitsiklis (1994), the

Q-learning algorithm was proved to be asymptotically

convergent to the optimal value functions if every state of a

finite-state MDP has been visited an infinite number of

times. In Singh et al. (2000), the convergence results of a

variant of Q-learning called Sarsa-learning were also

established.

Although much progress has been made in RL algo-

rithms for finite state and action spaces, it is difficult or

even impossible to extend tabular RL algorithms to MDPs

with large or continuous state/action spaces. This problem,

which is called the ‘curse of dimensionality’, is also an

open problem for DP methods in operations research. In

recent years, approximation techniques for RL and DP

have attracted much research interest (Bertsekas and

Tsitsiklis 1996). Among these techniques, value function

approximation (VFA) is the most popular one, and many

empirical results (Tesauro 1994; Crites and Barto 1998;

Zhang and Dietterich 1995), as well as some theoretical

analysis, have been given for VFA in RL. However, when

nonlinear approximators are used, it is hard for VFA-based

RL algorithms to converge to the optimal policy or a near-

optimal policy. In contrast to the VFA methods, policy

search is another class of approximate RL approaches,

where the policies of MDPs are approximated directly. An

earlier work on policy search for RL is the REINFORCE

algorithm (Williams 1992), which is based on gradient

search techniques. The GPOMDP algorithm (Baxter and

Bartlett 2001) was proposed for partially observable MDPs

with convergence properties. In these policy search algo-

rithms, the computational costs are usually very large for

large-scale MDPs and due to the local minima of gradient

algorithms, the optimality of ultimate policies is sensitive

to initial conditions.

In addition to the convergence problem, previous work

on VFA-based RL algorithms as well as policy search

methods is mainly dedicated to MDPs with discrete

actions. For MDPs with both continuous state and contin-

uous action spaces, VFA techniques in RL will have

computational difficulties in searching for the optimal or

near-optimal policies. Compared with approximation

methods for RL in continuous state spaces, there have been

few efforts devoted to RL in continuous action spaces.

A direct and simple approach to dealing with continuous

action spaces is to make use of interpolation techniques in

discretized action spaces, where the action value functions

are usually approximated by existing discrete-action RL

algorithms such as Q-learning (Millan et al. 2002; Hasselt

and Wiering 2007). However, as indicated by Lazaric et al.

(2008), to realize efficient searches in continuous action

spaces, interpolation-based algorithms need to make (often

implicit) assumptions about the shape of the value function.

The actor-critic algorithms are another class of RL

methods for MDPs with continuous spaces. Unlike VFA-

based methods, actor-critic algorithms approximate the

value functions and policies of an MDP separately so that

they will be beneficial for realizing generalization in MDPs

with continuous spaces. Much of the recent work on actor-

critic methods has been focused on adaptive critic designs

(ACDs) (Prokhorov and Wunsch 1997), where an

approximated model of the plant dynamics is required. In

Lazaric et al. (2008), a Sequential Monte Carlo (SMC)

method was proposed to approximate the sequence of

probability distributions implemented by the actor, thus

obtaining a novel actor-critic algorithm called SMC-

learning. Nevertheless, discussions on SMC-learning are

limited to discrete state spaces and a good discretization of

the state space is required for SMC-learning.

Generally speaking, for MDPs with both continuous

state and continuous action spaces, there are still two

challenging problems for existing RL algorithms. One is

the local convergence problem for policy search using

gradient-based techniques. The other is the structure or

feature selection problem for function approximators, e.g.,

the neural networks used in ACDs. Aiming at the above

difficulties, an approximate policy iteration approach with

fast policy search and adaptive basis function selection,

which is called Continuous-action Approximate Policy

Iteration (CAPI), is presented in this paper. In CAPI, an

analytic optimization technique is employed to realize fast

policy search in continuous action spaces. Two adaptive

basis function selection methods are developed for TD

learning in continuous action spaces so that automatic

feature selection can be realized by analyzing the relevance

of candidate basis functions. In the simulations, it is

illustrated that CAPI can converge to near-optimal policies

in a few iterations and the generalization ability of CAPI is

well guaranteed with sparse features automatically con-

structed by the proposed basis function selection methods.

The performance of CAPI was compared with some

recently developed RL algorithms, namely least-squares

policy iteration (LSPI) (Lagoudakis and Parr 2003), kernel-

based LSPI (KLSPI) (Xu et al. 2007), and Sarsa-learning

with VFA, and it was shown that CAPI can obtain com-

parable or even superior results to these popular RL

methods.

In summary, existing work on RL in continuous state

and action spaces can be divided into two categories. The

first category is to estimate performance gradients of MDPs

or POMDPs, which includes various policy gradient algo-

rithms such as GPOMDP and the REINFORCE algorithm.

The main disadvantage of policy gradient RL is the large

variance and slow convergence in estimation of policy

gradients. Therefore, the data efficiency of policy gradient

RL algorithms needs to be improved for real-world
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applications. The second category of RL for continuous

spaces is the actor-critic algorithms, e.g., ACDs and LSPI,

which use value function estimation to decrease the vari-

ance of policy gradients. However, the performance of

actor-critic algorithms relies greatly on the estimation

precision of value functions. The proposed CAPI method

can be viewed as a novel actor-critic method based on

approximate policy iteration, where the policy gradients

are replaced by a greedy policy improvement operator. It is

different from previous approaches in that a fast policy

search mechanism as well as adaptive basis function

selection methods is integrated in an API framework so

that the estimation precision of value functions can be

improved for better convergence and data efficiency.

Therefore, the main contributions of this paper include

the following two aspects. The first aspect is that the

general framework of CAPI with fast policy search and

adaptive basis function selection is presented so that near-

optimal policies of MDPs with continuous states and

actions can be approximated in a simple and efficient way.

In the CAPI framework, the gradient information of dif-

ferentiable value function approximators is used to perform

fast policy search in continuous action spaces and the

solution can be obtained in a simple and analytical way,

and it will be computationally more efficient than other

mathematical programming methods for policy search. The

second aspect of contributions is that adaptive basis func-

tion selection is incorporated into CAPI to increase the

performance of policy evaluation so that good convergence

properties can be guaranteed for approximate policy iter-

ation. Specifically, two adaptive basis function methods

were studied in detail, for linear and kernel-based TD-

learning, respectively.

This paper is organized as follows: In Sect. 2, an

introduction on TD learning and approximate policy iter-

ation is given. A general framework of the CAPI algorithm

with fast policy search and adaptive basis function selec-

tion is presented in Sect. 3. In Sect. 4, two basis function

selection methods are presented for CAPI using kernel

functions and linear polynomials. In Sect. 5, simulation

results on two learning control problems are provided to

illustrate the effectiveness of the proposed algorithm.

Section 6 draws conclusions and suggests future work.

2 TD learning and approximate policy iteration

In this section, a brief introduction on the popular linear

TD(k) algorithm as well as the LS-TD(k) algorithm will be

given. Then the basic process of API will be discussed.

2.1 TD learning for policy evaluation

In TD learning, an MDP is assumed to have a stationary

policy p and it is assumed that an identical Markov chain

with control actions can be defined for the MDP. The

objective of TD learning is to compute the value function or

action value function of the Markov chain. Let the trajectory

generated by the Markov chain be denoted by

xt;atjt ¼ 0; 1; 2; . . .; xt 2 X
� �

: For each state transition

from xt to xt?1, a scalar reward rt is defined. The action value

function of each state-action pair is defined as follows:

Qpðx; aÞ ¼ E
X1

t¼0

ctrt x0 ¼ xj ; a0 ¼ a

( )

ð1Þ

where 0\c� 1 is a discount factor.

In the TD(k) algorithm, there are two basic mechanisms,

the TD and the eligibility trace, respectively. TDs are

defined as the differences between two successive estima-

tions and have the following form:

dt ¼ rt þ cQ̂p
t xtþ1; atþ1ð Þ � Q̂p

t xt; atð Þ ð2Þ

where xt?1 is the successor state of xt, Q̂p x; að Þ denotes the

estimate of the action value function Qp(x,a), and rt is the

reward received after the state transition from xt to xt?1.

The eligibility trace can be viewed as an algebraic trick

to improve learning efficiency without recording all the

data of a multi-step prediction process. This trick is based

on the idea of using truncated returns of a Markov chain.

To realize incremental or online learning, eligibility traces

are defined for each state-action pair (x,a) as follows:

ztþ1ðx; aÞ ¼
ck ztðx; aÞ þ 1; if x ¼ xt; a ¼ at

ck ztðx; aÞ; else

�
ð3Þ

where 0� k� 1 is a constant.

The online TD(k) update rule with eligibility traces is

Q̂p
tþ1 x; að Þ ¼ Q̂p

t x; að Þ þ atdtztþ1 x; að Þ ð4Þ

where dt is the TD at time step t, which is defined in (2) and

z0(x) = 0 for all x.

Since the state space of a Markov chain is usually large

or infinite in practice, function approximators are com-

monly used to approximate the value function, where

TD(k) algorithms with linear function approximators are

the most popular and well-studied ones.

In linear TD(k), the following linear function approxi-

mator with a fixed basis function vector is considered:

/ðx; aÞ ¼ /1 x; að Þ;/2 x; að Þ; . . .;/n x; að Þð ÞT

The estimated action value function can be denoted as

Q̂p
t x; að Þ ¼ /Tðx; aÞWt ð5Þ
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where Wt = (w1, w2,…,wn)T is the weight vector.

The corresponding incremental weight update rule for

linear TD(k) is

Wtþ1 ¼ Wt

þ at rt þ c/T xtþ1; atþ1ð ÞWt � /T xt; atð ÞWt

� �
z~tþ1

ð6Þ

where the eligibility trace vector z~tþ1 ¼ z1; z2; . . .; znð ÞT is

defined as

z~tþ1 ¼ ckz~t þ /ðxt; atÞ ð7Þ

In Tsitsiklis and Roy (1997), the above linear TD(k)

algorithm was proved to converge with probability 1 under

certain assumptions. The limit of convergence W* was also

derived, which satisfies the following equation:

E0 AðXtÞ½ �W� � E0 bðXtÞ½ � ¼ 0; ð8Þ

where Xt = (xt, at, xt?1, at?1, zt?1) (t = 1,2,…) form a

Markov process, E0[�] stands for the expectation with

respect to the unique invariant distribution of {Xt}, and

A(Xt) and b(Xt) are defined as

AðXtÞ ¼ z~t /T xtð Þ � c/T xtþ1ð Þ
� �

ð9Þ

b Xtð Þ ¼ z~trt ð10Þ

To improve the efficiency of linear TD(k) algorithms,

the least-squares temporal-difference algorithm, called LS-

TD(k), was proposed in Boyan (2002) by solving (8)

directly and the model-based property of LS-TD(k) was

also analyzed. Kernel methods can also be employed to

design kernel-based TD-learning with nonlinear function

approximation capability in a kernel-induced feature space,

which is called KLS-TD and has been studied in (Xu et al.

2007). In this paper, both LS-TD(k) and KLS-TD learning

algorithms will be applied and evaluated in the policy

evaluation process of CAPI. Adaptive basis function

selection will be studied for TD-learning in Sect. 4.

2.2 Approximate policy iteration in RL

Unlike the traditional policy iteration process in DP,

approximate policy iteration focuses on using function

approximators to estimate the value functions and policies

in MDPs with large or continuous spaces. The basic

structure of approximate policy iteration or an actor-critic

RL agent (Sutton and Barto 1998) is depicted in Fig. 1. In

Fig. 1, the critic and the actor perform the procedures of

policy evaluation and policy improvement, respectively.

Policy evaluation usually makes use of TD learning algo-

rithms to estimate the action value functions Qp[n] of policy

p[n] without any model information on the underlying

MDP, where p[n] is the policy in iteration number n.

Based on the estimated action value function Q̂p½n�; the

policy improvement in the actor produces a greedy policy

p[n ? 1] over p[n] as

p nþ 1½ � ¼ arg max
a

Q̂p½n�ðx; aÞ ð11Þ

Thus, the greedy policy p[n ? 1] is a deterministic

policy and when the estimated action value function Q̂p½n�

approximates p[n] with high precision, p[n ? 1] will be at

least as good as p[n]. This iteration process is repeated

until there is no change between the policies p[n] and

p[n ? 1]. After the convergence of approximate policy

iteration, a near-optimal policy can be obtained, usually

within a very few iterations. However, the convergence of

approximate policy iterations relies greatly on the

approximation precision of the real value functions. If the

value functions are exactly represented, e.g., in cases of

tabular state spaces, or the approximation errors are small

enough to be neglected, the convergence and performance

of approximate policy iteration will be very satisfactory.

3 A general framework of the CAPI algorithm

As discussed in Sect. 1, many research works on RL have

been focused on improving the generalization ability of RL

algorithms in MDPs with continuous state spaces and discrete

action spaces. However, in lots of real-world applications, it

will be necessary to develop RL algorithms for MDPs with

both continuous state and continuous action spaces. In this

paper, a general RL framework for continuous-action API

with fast policy search and adaptive basis function selection,

called CAPI, is proposed to obtain near-optimal control pol-

icies for MDPs with continuous state and action spaces. The

basic framework of CAPI, which is depicted in Fig. 2, mainly

consists of the following three procedures.

The first procedure is to perform adaptive basis function

selection using the data samples of the current policy.

Fig. 1 Basic structure of approximate policy iteration (Sutton and

Barto 1998)
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Various basis function selection methods can be employed

in this procedure to construct basis functions for TD-

learning with function approximation. In this paper, we

will focus on two adaptive basis function selection tech-

niques, for linear least-squares TD-learning and kernel-

based TD-learning, respectively. Furthermore, the value

function approximators can be selected to be differentiable

with respect to the actions so that a fast policy search can

be performed based on the gradient information of the

value function approximators. These two basis function

selection methods will be studied in detail in Sect. 4.

The second procedure in the framework is to use TD-

learning for policy evaluation. To approximate the value

functions in policy evaluation, both LS-TD(k) using linear

function approximators and its kernelized version KLS-

TD(k) can be used in CAPI. In this section, to simplify

notations, we will focus on CAPI with linear function

approximators, and the extension to CAPI using kernels

will be discussed in Sect. 4.

The third procedure in CAPI is to perform fast policy

search in continuous-action spaces based on the approxi-

mated action value functions. In the following, we will

present a computationally efficient method to search for the

optimal actions by using the gradient information of dif-

ferentiable value function approximators, so that the solu-

tion can be obtained in a simple and analytical way.

Although other mathematical programming methods for

optimization may be used in this process, the computa-

tional costs may prevent them from being used in complex

learning control problems which require a large number of

data samples for approximate policy iteration.

The initial conditions of CAPI include the initial policy

p(0) and the data samples generated from the initial policy.

The data samples are collected by simulating or observing

the underlying MDP controlled by policy p(0) for a number

of episodes and a state transition trajectory is recorded for

each episode. For every state xt?1 in the data samples

D(n) = {(xt, at, rt, xt?1, at?1)} (t = 1,2,…T), a fast policy

search process can produce a new greedy action a
0
tþ1 in the

continuous-action space based on the approximated action

value function. Then, a new set of data samples

D nþ 1ð Þ ¼ xt; at; rt; xtþ1; a
0
tþ1

� �� �
(t = 1,2,…T) can be

obtained for policy evaluation in the next iteration. The

CAPI algorithm is terminated when the difference between

two successive policies is smaller than a given threshold or

the iteration number reaches the maximum number of

iterations.

Compared with previous works on API in RL such as

LSPI, the main novelties of the above CAPI framework are

the fast policy search process in continuous-action spaces

and the adaptive basis function selection procedure for

performance improvement in TD-learning. The fast policy

search process will be presented in the following discus-

sions and the techniques for adaptive basis function

selection will be given in the next section.

In CAPI with linear function approximators, the action

value functions are approximated by a weighted sum of

linear feature vectors

Given: Data samples D(0)={(xt, at, rt, xt+1, at+1)} (t=1,2,…T), which are generated by an 

initial policy (0); the maximum iteration number is set to N. 

(a) Initialize: Set the parameters of TD learning algorithms; iteration number n=0. 

(b) (Adaptive Basis Function Selection): For data sample set D(n), employ adaptive 

basis function selection methods to construct the basis functions for linear 

approximators or kernel machines in TD-learning;  

(c) (Policy Evaluation): Use TD-learning to compute the approximated action value 

function ),(ˆ )( axQ n  for the current policy. 

(d) (Continuous-action Policy Search) For every state xt+1 in the data samples, 

perform fast policy search in the continuous-action space based on the gradients of 

the approximated action value function. 

(e) Update the data samples: D(n+1)= {( xt, at, rt, xt+1, 
'

1+ta )} (t=1,2,…T), where '
1+ta

is the greedy action computed in step (d).  

(f) If the difference between two successive policies is smaller than a given threshold or 

n>N, output the final weights and approximated action policy, stop.  

    Else n=n+1, return to (b). 

Fig. 2 A general framework of

the CAPI algorithm
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Q̂pðnÞ x; að Þ ¼ /T x; að ÞW ð12Þ

The policy evaluation process of CAPI can make use of

the following LS-TD(k) updates for estimating the weights

of action VFA.

WLS�TDðkÞ ¼ A�1
T bT ¼

XT

t¼1

AðXtÞ
 !�1 XT

t¼1

bðXtÞ
 !

ð13Þ

where A(Xt), b(Xt) are defined by (7), (9) and (10).

After computing the weights in (13), the approximated

action value function is obtained by

Q̂pðnÞðx; aÞ ¼ /Tðx; aÞWLS�TDðkÞ ð14Þ

To realize policy improvement in CAPI, it is necessary

to perform policy search in the action value function space

so that the best action for each state in the sample

trajectories can be found:

p½nþ 1� xj ¼ a� ¼ arg max
a

Q̂pðnÞðx; aÞ ð15Þ

The fast policy search method in this paper employs a

differentiable approximation structure for the action value

functions, i.e., the basis functions in (14) are selected to be

differentiable with respect to the action a. As will be

discussed in Sect. 4, by appropriately selecting the basis

functions for VFA, the linear function approximators and

the kernel-based basis functions in CAPI can both be

differentiable with respect to the action a, so that analytic

solution techniques can be used for fast policy search in

continuous action spaces.

We assume that the action a varies in an interval [amin,

amax]. When the approximated action value function is

differentiable with respect to a, the derivatives of the action

value function can be computed for amin \ a \ amax ,and

the solution a0 of the following equation can be obtained as

a candidate for the best action

oQ̂ x; a;WLS�TDð Þ
oa

a¼a0j ¼ 0 ð16Þ

As we will discuss in Sect. 4, when polynomials or

polynomial kernels are used as the basis functions, the

solutions to the above equation can be computed directly.

In addition, when a low degree polynomial is selected, the

optimal solution to (16) can be obtained by solving a low-

degree algebraic equation. This is computationally

efficient, and a unique solution may be computed. If

multiple solutions are obtained for (16), a0 will become a

set of candidate actions.

Then, for every state xt in the sample trajectories, the

greedy action a* can be selected among the candidate

action set {a0, amin, amax}, which satisfies the following

equation:

Q̂p xt; a
�ð Þ ¼ max Q̂p xt; aminð Þ; Q̂p xt; a

0
� �

; Q̂p xt; amaxð Þ
� �

ð17Þ

After computing the greedy action for every state in the

sampled trajectories, a new greedy policy can be obtained

on the state trajectories to implement the policy

improvement process:

p nþ 1½ �ðxtÞ ¼ arg max
a

Q̂p½n�ðxt; aÞ ¼ a� ð18Þ

The above process can be used as a fast policy search

technique for policy improvement in continuous action

space. Although the computation of the best action

for policy improvement can be formulated as a

mathematical programming problem, and linear or

nonlinear programming methods may be used, the above

policy search method is computationally simple and

effective. Furthermore, the implementation of the fast

policy search process will be integrated with the adaptive

basis function selection process in Sect. 4 so that low

degree linear polynomials or kernels can be selected and

the action value function approximators will be

differentiable with respect to the actions.

4 Adaptive basis function selection in CAPI

Since the success of approximate policy iteration will

mainly depend on the performance of TD learning algo-

rithms for policy evaluation, it is essential to use TD-

learning algorithms with good generalization capability

and high approximation accuracy. In this section, two

adaptive basis function selection methods will be inte-

grated in CAPI with linear polynomials and kernel-based

features, respectively. The first method is based on the

principle of correlation analysis so that a subset of poly-

nomial basis functions can be selected to improve the

generalization performance of LS-TD(k) learning algo-

rithms. The second method uses the approximately linearly

dependent (ALD) analysis approach for selecting kernel-

based feature vectors to realize sparse kernel-based CAPI.

4.1 Correlation analysis for CAPI with polynomial

basis functions

TD learning with linear basis functions has been widely

employed for policy evaluation because of its simplicity

and low computational complexity. In CAPI, in order to

implement fast policy search using approximated value

functions, it is beneficial to make the action value function

differentiable with respect to the action variables and the

optimization computation in (16) as simple as possible. In

the following, linear polynomials will be used as candidate
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basis functions for policy evaluation using LS-TD(k) so

that the solutions to (16) can be derived analytically. To

improve the generalization ability of linear polynomials, a

novel correlation analysis method is presented to select the

most appropriate basis functions.

Let f/iðx; aÞg (i = 1,2,…,N) be the set of candidate

polynomials, where N is the number of all possible basis

functions, x ¼ ðx1; x2; . . .; xmÞ is the state vector, a is the

action variable and m is the dimension of states. The

polynomial features have the following form:

/iðx; aÞ ¼ akai xk1i

1 xk2i

2 � � � xkmi
m ð19Þ

where 0� kai� na; 0� k1i� n1; 0� k2i� n2; . . .0� kmi

� nm; na; nj j ¼ 1; 2; . . .mð Þ are the maximum power num-

ber of the action a and the states, respectively.

Based on the above polynomial basis functions, the

approximated action value functions can be expressed as

Q̂pðx; aÞ ¼
XN

i¼1

akai xk1i

1 xk2i

2 � � � xkmi
m wi ð20Þ

where w is the weight vector computed by LS-TD learning

algorithms in the process of policy evaluation.

The derivative of the action value function with respect

to action a is

o

oa
Q̂pðx; aÞ ¼

XN

i¼1

kaia
kai�1ð Þxk1i

1 xk2i

2 � � � xkmi
m wi ð21Þ

Let

o

oa
Q̂pðx; aÞ ¼ 0 ð22Þ

Then, an algebraic equation for variable a is obtained

and the solutions can be computed for fixed states and

weight vectors. Since all solutions of Eq. 22 are extreme

values of the action value function, an optimal value of

action a for a given state x can be selected according to

(15). In CAPI, the weight vector can be computed by LS-

TD(k) using the data samples collected in each iteration.

Using the above optimization technique, it is direct and

simple to perform policy improvement in approximate

policy iteration with continuous action and state spaces.

However, sparsification techniques still need to be

developed to reduce the computational costs, since for

candidate basis functions in the form of polynomials, the

total number of possible features is

N ¼ na þ 1ð Þ
Ym

i¼1

ni þ 1ð Þ ð23Þ

If the dimension m of the state space or the maximum

power number of each dimension increases, the feature

dimension of the above linear polynomials will increase

very quickly. This may lead to large computational costs

and a possible reduction of generalization abilities.

Therefore, it is necessary to develop adaptive feature

selection methods for the above polynomial basis

functions.

As discussed earlier, the aim of TD(k) algorithms is to

approximate the action value function that satisfies the

Bellman equations 24 and 25, where R(x, a) is the reward

function, P is the state transition probability, and Pp is the

action selection probability of the policy. Since the

approximated action value function is represented by (20),

it is desirable to select a subset of basis functions which can

approximate the reward function R(x, a) efficiently and

compactly.

Qpðx; aÞ ¼ Rðx; aÞ þ cPPpQpðx; aÞ ð24Þ
I � cPPpð ÞQp x; að Þ ¼ Rðx; aÞ ð25Þ

In the proposed approach, the correlation coefficient

between each basis function and R(x, a) is adopted to

quantify the validity of the basis functions for

approximating R(x, a). When data samples of an MDP

are collected, the correlation coefficients between the basis

functions and the reward function can be computed as

follows:

qi ¼

PM
j¼1 /iðxj; ajÞ � �/i

� �
rðxj; ajÞ � �r
� ����

���
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM

j¼1 /iðxj; ajÞ � �/i

� �2 �
PM

j¼1 rðxj; ajÞ � �r
� �2

q

ð26Þ

where M is the total number of samples, i = 1,2,…,m, and

�r ¼
PM

j¼1 rðxj; ajÞ
M

ð27Þ

�/i ¼
PM

j¼1 /iðxj; ajÞ
M

ð28Þ

In our implementation, an iterative process was

designed to construct a set of polynomial basis functions

based on the above correlation analysis to select the most

appropriate polynomial basis functions. In the iterative

process, the set of selected basis functions is constructed

incrementally and the correlation analysis procedure is

performed between a candidate basis function and the

residual approximation errors of the reward function using

selected basis functions. Thus, in the computation of the

correlation coefficients in (26), the reward function r(x, a)

will be replaced by the approximation error Drðxj; ajÞ ¼
rðxj; ajÞ � r0ðxj; ajÞ; where r0ðx; aÞ is the least-squares

approximation to r(x, a) using the basis functions that

have been selected. Figure 3 gives a flow chart of the basis

function selection process based on correlation analysis.

The first stage in the iterative process is to initialize the

set of basis functions as follows:
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K ¼ /1ðx; aÞ ¼ a0x0
1x0

2 � � � x0
m ¼ 1

� �
ð29Þ

where K is the set of selected basis functions and

/1ðx; aÞ ¼ 1 can also be viewed as an offset value.

The second stage is to approximate the reward function

R(x, a) with the basis function set K by making use of the

least-squares regression method as follows:

w ¼
XM

i¼1

UTðxi; aiÞUðxi; aiÞ
� �

( )�1XM

i¼1

UTðxi; aiÞrðxi; aiÞ
� �

ð30Þ

r0ðx; aÞ ¼ Uðx; aÞw ð31Þ

where r0(x, a) is the least-squares approximation of r(x, a),

and Uðx; aÞ is defined as

Uðx; aÞ ¼ /1ðx; aÞ;/2ðx; aÞ; � � � ;/nðx; aÞð Þ; /iðx; aÞ 2 K
i ¼ 1; 2; . . .; n

For every sample (xj, aj) (j = 1,2,…,M), the residual

error of the above least-squares approximation can be

expressed as

Drðxj; ajÞ ¼ rðxj; ajÞ � r0ðxj; ajÞ ð32Þ

The third stage is to compute the correlation coefficients

between the remaining basis functions and Drðx; aÞ using

(26), where the reward function r(x, a) and its mean value

are replaced by the residual error Drðx; aÞ and its mean

value D�rðx; aÞ: The basis function with the maximal

correlation coefficient will be added to K.

As illustrated in Fig. 3, the above construction process

of the basis function set will be iterated until the maximum

of all the correlation coefficients is less than a given

threshold. After the end of the basis function selection, a

subset of the polynomial basis functions can be obtained to

realize sparse approximation of the action value function

for better generalization performance and lower computa-

tional complexity.

4.2 ALD analysis for kernel-based CAPI

Because of the capabilities of implicit nonlinear feature

transformations, kernel functions or kernel methods have

been popularly studied and employed in various machine

learning algorithms such as Kernel PCA (Schölkopf and

Smola 2002), Kernel ICA (Bach and Jordan 2002). The

application of kernel methods in RL has also received

increasing attention in recent years (Rasmussen and Kuss

2004). In the following, CAPI with kernel functions will be

studied and the basis function selection method for the spar-

sification of kernel-based features in CAPI will be discussed.

Let X be the original state space. A kernel function is a

mapping from X � X to R and a Mercer kernel is a kernel

function that is positive definite, i.e., for any finite set of

points {x1, x2,…,xn}, the kernel matrix K = [k(xi, xj)] is

positive definite. According to the Mercer theorem

(Schölkopf and Smola 2002), there exist a Hilbert space H

and a mapping / from X to H such that

kðxi; xjÞ ¼ h/ðxiÞ;/ðxjÞi ð33Þ

where h •, • i is the inner product in H. Although the

dimension of H may be infinite and the nonlinear mapping

/ is usually unknown, all the computations in the feature

space can still be performed if it is in the form of inner

products.

In CAPI, kernel functions can be used to approximate

the action value function by the following KLS-TD(k)

algorithm (Xu et al. 2007):

a ¼ A�1
T bT ð34Þ

AT ¼
XT

i¼1

k~ sið Þ k~
TðsiÞ � ck~

T
siþ1ð Þ

h i
ð35Þ

bT ¼
XT

i¼1

k~ðsiÞri ð36Þ

Fig. 3 Adaptive basis function selection based on correlation

analysis
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where si ¼ xi; aið Þ i ¼ 1; 2; . . .Tð Þ are the observed state-

action pairs at different time steps, and

k~ðsiÞ ¼ kðs1; siÞ; kðs2; siÞ; . . .; kðsT ; siÞð ÞT ð37Þ

Because the original dimension of the kernel-based basis

functions is equal to the number of data samples, feature

selection and sparsification are also needed to reduce the

computational complexity and improve the generalization

performance of kernel machines. In this paper, the ALD

analysis approach (Engel et al. 2004) will be employed to

implement sparsification and feature selection in CAPI

using kernel-based basis functions.

The main idea of ALD analysis is to select the

approximately linearly independent features to represent

the target function in a least-squares sense. In CAPI using

kernels, the features to be selected are generated from the

implicit feature mapping induced by the kernel function.

However, by making use of the kernel trick, the ALD

condition discussed below can be computed by the kernel

function, which is equal to the inner product of two kernel-

induced feature vectors.

Let Sn = {s1, s2, …, sn} denote a set of observation data

samples. To perform approximate linear dependence

analysis on the feature vector set, a data dictionary is

defined as a subset of the whole feature vector set. The data

dictionary is initially empty and the ALD analysis is

implemented by testing every feature vector in the feature

set, one at a time. If the feature vector of a data sample

cannot be approximated, within a predefined precision, by

a linear combination of the feature vectors in the dictio-

nary, it will be added to the dictionary; otherwise it will not

be added to the dictionary. Thus, after the ALD analysis

process, all the feature vectors of the data samples in Sn can

be approximately represented by linear combinations of the

feature vectors in the final dictionary within a given

precision.

Suppose we have tested t-1 1\t� nð Þ feature vectors

of the samples in the original data set Sn and Dt-1 = {/
(sj)} (j = 1,2,…d(t-1)) is the obtained data dictionary,

where d(t-1) is the number of selected features in the data

dictionary. The ALD condition of a new feature vector /
(st) can be tested as follows (Engel et al. 2004):

dt ¼ min
c

X

j

cj/ðsjÞ � /ðstÞ














2

� l ð38Þ

where c = [cj] (j = 1,2,…d(t-1)) and l is a threshold

parameter to determine the approximation accuracy and the

sparsity level. When l is appropriately selected, the spar-

sity of kernel-based solutions can be guaranteed without

sacrificing much in approximation accuracy.

The left side of inequality (38) can be rewritten as

dt ¼ min
c

(
X

i;j

cicjh/ðsiÞ;/ðsjÞi � 2
X

i

cih/ðsiÞ;/ðstÞi

þh/ðstÞ;/ðstÞi
)

ð39Þ

Due to the kernel trick, after substituting (37) into (39),

we can obtain

dt ¼ min
c

cT Kt�1c� 2cT kt�1ðstÞ þ ktt

� �
ð40Þ

where [Kt-1]i,j = k(si, sj), si (i = 1,2,…,d(t - 1)) are the

elements in the dictionary, kt-1(st) = [k(s1,st), k(s2, st),…,

k(sd(t-1),st)]
T, c = [c1, c2,…,cd]T and ktt = k(st, st).

In the ALD-based sparsification process, the data dic-

tionary is updated by comparing dt with a predefined

threshold l. If dt \ l, the dictionary is unchanged, other-

wise, st is added to the dictionary, i.e., Dt ¼ Dt�1 [ stf g:
After all the data samples are tested, a subset of data

samples can be selected as the dictionary for computing the

kernel-based basis functions so that the action value

function can be estimated with lower computational

complexity.

5 Performance evaluation

To illustrate the effectiveness of the proposed approach,

two learning control tasks with continuous state and action

spaces were considered to evaluate the performance of

different RL algorithms, namely CAPI, LSPI, Sarsa-

learning and KLSPI. These two tasks, the mountain-car

task and the inverted pendulum problem, have been pop-

ularly used as benchmark problems for performance eval-

uation of RL algorithms (Sutton 1996). However, in

previous studies, the control action sets were commonly

assumed to be discrete and the control policies obtained by

RL algorithms were restricted to discrete action spaces. In

CAPI, continuous action spaces will be searched for esti-

mation of near-optimal policies. This is more practical in

many real-world applications. In the following simulation,

the performance of different RL algorithms will be com-

pared not only in terms of learning efficiency or conver-

gence but also in terms of the quality of final control

policies. It will be shown that the CAPI algorithms with

polynomial basis functions and kernel functions can con-

verge to near-optimal policies in a few iterations. More

importantly, since CAPI can implement fast policy search

in continuous action spaces and realize better generaliza-

tion using adaptive basis function selection, the near-opti-

mal policies of CAPI will have comparable or even better

performance than LSPI, KLSPI and Sarsa-learning.
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5.1 The mountain-car task

The mountain-car task is to learn a time-optimal control

policy to drive an underpowered car up a steep mountain

road, as shown in Fig. 4. The difficulty in this task is that

gravity is stronger than the car’s engine power, and even at

full throttle the car cannot accelerate up the steep slope.

The feasible solution is to first move back away from the

goal and up the opposite slope on the left. Then, the car

must apply its maximum throttle to push it up the steep

slope even though it is slowing down the whole way. This

is a time-optimal control problem with continuous state and

control action spaces. It is difficult for many control

methodologies unless explicit aid can be provided from a

human designer.

For RL algorithms, the problem becomes more difficult,

since the dynamics of the car are assumed to be unknown.

Furthermore, when no prior expert knowledge is available,

it is more challenging to find a near-optimal policy in both

continuous state and continuous action spaces. In previous

work, by making use of human experience, only discrete

actions with maximum values were considered and the

main focus was the generalization in continuous state

spaces. For example, in Sutton (1996) and Whiteson and

Stone (2006), various function approximators were con-

sidered to realize generalization in continuous state spaces.

In CAPI, the generalization in both continuous state and

continuous action spaces will be realized by combining the

fast policy search method with LS-TD learning as well as

automatic basis function selection. To illustrate the effec-

tiveness of the proposed method, CAPI will be applied in

the mountain-car task and its performance will be com-

pared with previous RL algorithms, including Sarsa-

learning, LSPI, and KLSPI.

In the learning control experiments, the dynamics of the

car can be described as follows:

_x ¼ v
_v ¼ 0:001u� g cos 3x

�
ð41Þ

where the gravity term g = 0.0025, x and v are the position

and velocity of the car, and u is the control action which is

bounded by the car’s maximum throttle. The variation

range for the car’s states is

�1:5� x� 0:5 ð42Þ
�0:07� v� 0:07 ð43Þ

When the car is at the left peak, x = -1.5. The initial

position of the car is x = -0.5, which is at the lowest point

of the valley. The goal of the car is the right-most peak,

with x = 0.5. The learning control task is to find a time-

optimal control policy, without any model information, to

move the car from its initial position to the goal.

To apply RL algorithms, the problem can be modeled as

an MDP, where the states include the car’s position and

velocity, the action is the control force u, and the reward

function can be defined as

rt ¼
�1; x\0:5
100; x� 0:5

�
ð44Þ

For LSPI, KLSPI, and Sarsa-learning, the control

actions are limited in a discrete set {-1, 1}. In CAPI,

policy search is performed in a continuous interval [-1, 1].

The maximum iteration number of LSPI, KLSPI, and CAPI

is 10. The discount factor of all the algorithms is set to

0.95. In the experiments, one episode for data collection is

defined as the time period from an initial state of the car to

the goal state or the final state after a maximum number of

time steps. For approximate policy iteration algorithms, 20

episodes of data samples were collected where the

maximum number of time steps in each episode is

100,000. The initial policy for the API algorithms is a

randomized control policy. The initial weights of Sarsa-

learning were also generated from a uniform probabilistic

distribution.

For the four RL algorithms evaluated in the experi-

ments, since different parameter settings may cause per-

formance variations, the parameter setting with the best

average performance among five independent tests was

selected for the evaluation of each algorithm. In Sarsa-

learning, the state and action spaces of the mountain-car

problem were both partitioned into discrete values, and a

learning rate a = 0.5 was used. For LSPI, the following

polynomials were selected as the linear basis functions:

/ðx~; aÞ ¼ dðx~; a1Þ; dðx~; a2Þ½ � ð45Þ

dðx~; aiÞ ¼
0; 0; 0; 0; 0 a 6¼ ai

1; x; x2; v; v2½ � a ¼ ai

�
ð46Þ

where x~¼ ½x; v�; and a1 = 1, a2 = -1, corresponding to

the two action values of the car.

To illustrate the effectiveness of the proposed methods

for basis function selection, linear polynomials and poly-

nomial kernels with the following forms were used in

CAPI for VFA:

/iðx~; aÞ ¼ akai xk1i vk2i ð47Þ

Fig. 4 The mountain-car task
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k x~1; a1ð Þ; x~2; a2ð Þð Þ ¼ 1þ a1a2 þ x1v2 þ x2v1ð Þ2 ð48Þ

where 0� kai� 2; 0� k1i� 2; 0� k2i� 2; and the number

of candidate polynomials is 27.

In KLSPI for MDPs with discrete actions, a radius basis

function (RBF) kernel was used to approximate the action

value functions, where all the state and action variables

were normalized into the interval of [-1, 1]. The width

parameter for RBF kernels was set to 1 and the threshold

for ALD analysis is 0.65.

In the experiments, it was observed that the proposed

CAPI algorithms, either with linear polynomials or with

kernels, can converge to a near-optimal policy in a few

iterations. The learning curves of CAPI, averaged in five

independent runs, were depicted in the following Fig. 5,

where the performance variations (in terms of running

steps to the goal) of CAPI with linear polynomials and

CAPI with kernels were shown in solid lines and dotted

lines, respectively.

Because there are performance variations in different

runs of RL algorithms, a best near-optimal policy was

selected and compared from five independent runs for each

RL algorithm. In Fig. 6, the performance of the final pol-

icies obtained by different RL algorithms was evaluated

based on the trajectory of the car’s position. The horizontal

axis is the number of time steps and the vertical axis is the

position of the car controlled by the final policies of RL

algorithms, where the red dotted line indicates the goal

position. Every curve in Fig. 6 illustrates the position

variations of the car and a curve ends when the car’s

position is equal to the goal position. Figure 6 shows that

the proposed CAPI algorithms, including CAPI with ker-

nels and with polynomials, can achieve better near-optimal

policies than Sarsa-learning, LSPI, or KLSPI.

In the simulation, the basis function selection methods

presented in this paper can generate sparse representations

for action value functions in continuous spaces. In CAPI

with kernel functions, the number of selected elements in

the data dictionary is 10. A total of 11 polynomials were

selected in CAPI with polynomials.

In Fig. 7, the approximated action value functions of the

near-optimal policy obtained by CAPI with kernel functions

are depicted in the form of 3-dimensional surfaces, where

the three sub-figures show the action value functions of the

control policies when the car’s velocities are at -0.07, 0, and

0.07, respectively. The approximated action value functions

of CAPI using polynomials, which are almost identical to

those of CAPI using kernels, are shown in Fig. 8.

5.2 The inverted pendulum problem

The inverted pendulum problem has been widely studied as

a benchmark control problem with nonlinearity and insta-

bility. The controller design for inverted pendulums

becomes more difficult when there are model uncertainties

and unknown disturbances in the plant dynamics. The

learning control of inverted pendulums is different from

conventional controller design in that no model informa-

tion is required a priori and the controller is constructed in

a data-driven style. The learning control of inverted pen-

dulums has also been considered as a test problem for

machine learning methods, especially for reinforcement

learning algorithms (Barto et al. 1983). In the following,

simulation studies will be conducted on the inverted pen-

dulum problem to compare the performance of different

RL algorithms.

Figure 9 shows a typical inverted pendulum system,

which consists of a cart moving horizontally and a pole

Fig. 5 The learning curves of

CAPI averaged in five

independent runs (dotted CAPI

with kernels; solid CAPI with

polynomials)
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with one end fixed at the cart. Let x denote the horizontal

distance between the center of the cart and the center of the

track, where x is negative when the cart is in the left part of

the track. Variable h denotes the angle of the pole from its

upright position (in degrees) and F is the amount of force

(N) applied to the cart to move it towards its left or right.

So the control system has four state variables x; _x; h; _h;
where _x; _h are the derivatives of x and h; respectively.

The dynamics of the control system can be described by

the following equations.

€h ¼ ðmþMÞg sin h�cos h Fþml _h2 sin h�lcsgnð_xÞ½ ��lpðmþMÞ _h
ml

4
3
ðMþmÞl�ml cos2 h

€x ¼ Fþmlð _h2 sin h�€h cos hÞ�lcsgnð_xÞ
Mþm

8
<

:
ð49Þ

where g is the acceleration due to the gravity (-9.8 m/s2).

In Fig. 9, the mass of the cart is M = 8.0 kg, the mass of

Fig. 6 Performance

comparisons of the final policies

obtained by different RL

algorithms

Fig.7 Approximated action value functions of CAPI using kernels

Fig. 8 Approximated action value functions of CAPI using polynomials
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the pole is m = 2.0 kg, the half-pole length is l = 0.5 m,

lc is the coefficient of friction of the cart on the track and

lp is the coefficient of friction of the pole on the cart. In the

simulation, both of the friction coefficients were neglected.

The simulation time-step is 0.1 s.

In the learning control experiments, the dynamics of the

pendulum system is assumed to be unknown. The aim of the

learning controller is to balance the pole as long as possible

and make the angle variations of the pendulum be as small as

possible. The reward function at time step t can be defined as

rt ¼ e� 2�hðtÞj j ð50Þ

The objective function to be optimized can be given as

V ¼
XM

t¼1

ctrt ð51Þ

where M is the maximum time step and 0 \ c\1 is a dis-

count factor. When the objective function V is maximized,

the balancing ability and control performance of the

learning controller will also be enhanced to its maximum.

In the learning control problem of inverted pendulums,

the state space is spanned by four continuous state vari-

ables. In our implementation, only two state variables, i.e.,

h and _h; were used for VFA. In traditional RL algorithms

for discrete actions, there are only two values of the force

F, ?50 N and -50 N. When the action space is limited to

finite elements, the control policies of RL algorithms may

not obtain near-optimal policies in the original continuous

action space. For example, it will be necessary to design a

continuous control policy to minimize the control objective

specified by (50) and (51).

In the simulation, different RL algorithms were tested in

the inverted pendulum problem. For LSPI, KLSPI, and

CAPI, the maximum iteration number is 10 and 50 epi-

sodes of data samples were collected where the maximum

number of time steps in each episode is 1,000. In every

episode, the initial angle of the pole was set to -0.4 rad.

The initial policy in the first iteration of all the API algo-

rithms is a randomized control policy. The initial weights

of Sarsa-learning were also generated from a uniform

distribution. In Sarsa-learning, an episode has a maximum

of 1,000 time steps and the maximum number of episodes

is 50,000. The discount factor for all the RL algorithms is

0.9. One representational parameter setting with the best

average performance among five independent performance

tests was selected for each algorithm. In Sarsa-learning, the

state and action spaces of the inverted pendulum problem

were both partitioned into discrete values, and a learning

rate a = 0.3 was selected.

Similar to the simulation results in the previous moun-

tain-car problem, it was observed that the proposed CAPI

algorithms can converge to a near-optimal policy with

continuous actions in a few iterations. The learning curves

of CAPI, averaged over five independent runs are depicted

in Fig. 10. The performance variations of CAPI with linear

polynomials are shown by solid lines and those of CAPI

with kernels by dotted lines, where the performance mea-

sures were computed as

Fig. 9 Control system of an inverted pendulum

Fig. 10 The learning curves of

CAPI averaged in five

independent runs of pendulum

control
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J ¼
XT

t¼0

Dhj j ð52Þ

When the objective function in (51) is maximized, the

performance measure in (52) will also be minimized. Thus,

the final policies after the convergence of CAPI can bal-

ance the pole with minimal variations of the pole angle, as

demonstrated in Fig. 11. In Fig. 11, the angle variations of

the pole controlled by the final policies obtained from

different RL algorithms are depicted. It is shown that using

the near-optimal policies of CAPI, the pole angle can be

stabilized to a very small region around the equilibrium and

the angle variations during the process are minimized. For

other RL algorithms with discrete actions, although the

pendulum can be balanced around the equilibrium, there

are large oscillations of the pole angles. Therefore, the

near-optimal policies found by CAPI have much better

performance than LSPI, Sarsa-learning and KLSPI.

In Fig. 12, the control outputs of the final policies

obtained by different RL algorithms are depicted. Since the

actions of Sarsa-learning, LSPI and KLSPI only have dis-

crete values, their control outputs at different time steps are

plotted as isolated points. The control outputs of the CAPI

algorithms, either with polynomials or with kernels, are

continuous, so continuously varying curves can be

obtained. It is shown that the CAPI algorithm can

approximate a smooth near-optimal control policy for the

inverted pendulum problem in a continuous action space

while the other RL algorithms can only search for control

policies with discrete actions, which will limit the perfor-

mance of the final policies. Thus, compared with previous

RL methods, CAPI provides a very efficient RL approach

Fig. 11 Performance

comparisons of the final policies

obtained by different RL

algorithms

Fig. 12 Control outputs of the

final policies obtained by

different RL algorithms
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to find near-optimal policies for MDPs with continuous

state and action spaces.

For policy evaluation in CAPI, linear polynomials and

kernel functions are both good candidates for VFA, and

sparse approximations with improved generalization ability

can be realized by making use of the adaptive basis function

selection techniques presented in Sect. 4. In CAPI with

kernel functions, the number of selected elements in the

data dictionary is 11, and a total number of 18 polynomials

were selected in CAPI with polynomials. The following

Figs. 13 and 14 show the approximated action value func-

tions of the near-optimal policies obtained by CAPI with

polynomial kernels and linear polynomials, respectively.

In Figs. 13 and 14, the approximated action value

functions are depicted in the form of 3-dimensional sur-

faces, where the three sub-figures show the action value

functions of the control policies when the pendulum’s

angular velocities are at -1.0, 0, and 1.0, respectively.

6 Conclusions

Reinforcement learning has been widely studied as an

important class of solution techniques for complex

sequential decision problems. Although much progress has

been made in the last decade, it is still a challenging

problem to approximate near-optimal policies for MDPs

with continuous state and action spaces, where the gener-

alization ability and learning efficiency in continuous

action spaces become critical factors for the success of RL

and approximate DP methods.

In this paper, the CAPI method, integrated with fast

policy search and adaptive basis function selection, was

proposed. Compared with previous RL methods, CAPI

makes use of two key mechanisms to solve the difficulties

in approximating near-optimal policies for MDPs with

continuous spaces. One is that a fast policy search tech-

nique is employed to search for optimal actions in con-

tinuous action spaces, where differentiable function

approximators are employed for policy evaluation. The

other is that adaptive basis function selection techniques

are developed for two different VFA methods, i.e., TD

learning using linear polynomials and kernel functions.

Based on the above two factors, the generalization ability

and learning efficiency of CAPI can be well guaranteed.

Simulation results on two learning control tasks of MDPs

with continuous state and action spaces illustrate that CAPI

not only has good convergence property but also can obtain

comparable or even better performance than Sarsa-learn-

ing, LSPI and KLSPI.

Fig. 14 Approximated action value functions of CAPI using polynomials

Fig. 13 Approximated action value functions of CAPI using kernels
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The CAPI approach presented in this paper provides a

very promising way to solve difficult MDPs with contin-

uous state and action spaces. Nevertheless, there are still

some problems to be studied in future work. Since the

selection of basis functions is very important to the per-

formance of TD learning algorithms, one challenging

problem is to develop adaptive basis function selection

methods for high-dimensional state and action spaces. In

addition, it would be valuable to study the combination of

CAPI and other basis function selection methods such as

those in Representation Policy Iteration (Mahadevan and

Maggioni 2007). For multi-dimensional action spaces, it is

necessary to study fast policy search techniques to perform

policy improvement efficiently. Although the superiority of

CAPI has been demonstrated in some typical learning

control problems, it will be desirable to evaluate CAPI and

its future improved versions in more complex MDPs, and

apply CAPI in real-world decision and control problems.
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